MONTAFRUSIN, A NEW GERMACROLIDE FROM MONTANOA FRUTESCENS*

L. QUIJANO, J. S. CALDERÓN, F. GOMEZ G and T. RIOS C. Instituto de Química, Universidad Nacional Autónoma de México, México 20, D.F.

(Revised received 24 October 1978)

Key Word Index—Montanoa frutescens; Compositae; Heliantheae; a new germacrolide type sesquiterpene lactone; montafrusin.

Abstract—The investigation of *Montanoa frutescens* afforded a new sesquiterpene lactone of the germacrolide type, montafrusin, besides the known diterpenes kaurenic acid and its 15α -isovalerate.

INTRODUCTION

Montanoa frutescens and M. tomentosa (Compositae, Heliantheae) are Mexican plants commonly known as 'zoapatles'. Previous studies of Montanoa tomentosa have shown the presence of several diterpenoid compounds [1] and a sesquiterpene lactone [2].

RESULTS AND DISCUSSION

Recently we have undertaken the study of *Montanoa frutescens* and have isolated kaurenic acid and its corresponding 15α -isovalerate, and a new sesquiterpene lactone of the germacrolide type which we named montafrusin (1a). The proposed structure and stereochemistry of 1a were established by spectroscopic methods. Montafrusin (1a) $C_{20}H_{26}O_6$, mp $184-6^\circ$ showed IR absorptions at 3540 and 3450 cm⁻¹ indicating the presence of OH groups. An absorption at 1765 cm⁻¹ was typical of α,β -unsaturated γ -lactones, a band at 1710 cm^{-1} corresponded to an α,β -unsaturated ester and one at 1650 cm^{-1} to double bonds. The MS showed a molecular ion at m/e 362 $(C_{20}H_{26}O_6)$ and other

spectral peaks at 344 (M⁺ -18), 262 (M⁺ -100), 244 (M⁺ -118) as well as the strongest peaks at m/e 83 (100%) and 55 which suggested the presence of a five-carbon ester side chain, which must be an angelate group on the basis of the vinyl proton signal appearing at 6.1 ppm in the ¹H NMR spectrum [3, 4].

The ¹H NMR spectrum (Table 1) of 1a exhibited doublets of doublets typical of the lactonic exocyclic methylene with absorptions at δ 6.09 (${}^4J = 3.8, {}^2J = 1$) and 5.64 (${}^4J = 3.5$, ${}^2J = 1$), the large allylic coupling constant suggesting a trans-fused lactone ring [5, 6]. A doublet of doublets at 4.19 (J = 10, J = 4) which was assigned to H-9, collapsed to a doublet (J = 10) upon D₂O addition. All other proton assignments were determined by spin-spin decoupling experiments. The doublet of doublets at 4.54 (J = 10, J = 3) was assigned to H-8 since irradiation of this signal affected H-9. The overlapping signals at 4.8-5.05 were assigned to H-2 and H-5, the signal being affected by irradiations of the absorptions centred at 5.6 (H-1) and the doublet of doublets at 5.33 (H-6). The latter resonances were assigned to H-1 and H-6, respectively, on the basis that irradiation at the centre of δ 5.6 sharpened the C-10

$$R^{1}O$$

OR

OR

OH

OH

OAng

^{*}Contribution No. 482 from Instituto de Química de la UNAM.

Table I. ¹H NMR data* of montafrusin (1a), montafrusin diacetate (1b) and Cope rearrangement product (3)

	1a	1 b	3
H-1	5.6†	5.77†	4.42 d(7.5)
H-2	4.92 brt (8)	†	6.99 d (7.5)
H-3a	2.72 dd (13, 8)	2.78 dd (14, 7)	5.11 t (1.5)
H-3b	2.36 brd (13)	2.33 dd (14, 2)	4.82 br
H-5	4.95 brd (11)	4.9 brd (10)	2.95 d (11.5)
H-6	5.33 dd (10, 8)	5.33 dd (10, 8.5)	4.26 dà (11.5)
H-7	2.75 m	2.69 m	3.02 m
H-8	4.54 dd (10.3)	4.78 dd (10.3)	5.51 dd (7.6)§
H-9	$4.19 \ dd \ (10.4)^{+}$	5.14 d (10)	5.61 d (7)
H-13	6.09 d (3.8)	6.23 d (3.8)	6.11 d(3)
H-13'	5.64 d (3.5)	5.61 d (3.5)	5.43 d (3)
H-14	1.9 s	1.87 s	1.36 s
H-15	1.8 br	1.87 s	1,86 br
H-3'	6.1 brg	6.1 brq	6.18 brg
H-4'	$1.9 \ \ 2.0 \ m$	1.9 2.1 m	$2.01 \ m^{-1}$
H-5'	1.9-2.0 m	$1.9-2.1 \ m$	1.86 m
Ac		2.03, 2.11 s	1.94, 2.2 s

*Run at 100 MHz in CDCl₃ with TMS as internal standard. 1a was run in acctone- d_6 . Values are in ppm (δ). Values in parentheses are coupling constants in Hz.

†Signal obscured.

‡Changes to a sharp doublet (J = 10) on D_2O exchange. §No first order pattern.

vinylic methyl absorption at 1.8 and irradiation at 5.33 affected the H-7 signal at 2.8. Conversely, irradiation at 2.8 (which affects one of H-3 signals) collapsed the exocyclic methylene proton signals to singlets and the H-6 and H-8 signals at 5.33 and 4.54, respectively, to broad doublets (J = 10), the overlapping H-2 signals at 4.92 also being affected by this irradiation. It is interesting to point out that irradiation at 4.91 (H-2 and H-5) not only affected the H-3, H-1 and H-6 signals but also the C-10 methyl absorption which appeared as a doublet (J = 1.5) indicating a long range coupling between H-2 and the C-10 methyl group.

According to the above data, montafrusin could be represented by either 1a or 2 exclusive of stereochemistry, which would be the 2-OH isomer of the structure reported for tomentosin [2]. Acetylation of montafrusin (1a) afforded the diacetate 1b with IR absorptions at 1775, 1735, 1720, 1650 and 1600 cm⁻¹. The ¹H NMR spectrum displayed two sharp acetate methyl signals at $\delta 2.03$ and 2.11 and a downfield absorption at 5.14.

Montafrusin showed a CD curve typical of a C-6 trans-fused γ -lactone in accord with the Stöcklin-Waddell-Geissman rule [7]. A negative Cotton effect was observed at 262 nm corresponding to the $n \to \pi^*$ transition of the unsaturated γ -lactone, besides a strong positive band at 214 nm due to the $\pi \to \pi^*$ transition of the trans annular-cross conjugated double bonds.

Final confirmation of the structure of 1a was achieved by obtaining the Cope rearrangement product 3 by pyrolysis of the diacetate 1b. The ¹H NMR spectrum of the enol-acetate 3, exhibited the H-5 signal as a doublet at δ 2.95 (J = 11.5) and the H-6 signal as a doublet of doublets at 4.26 (J = 11.5, J = 11.5) indicating the trans diaxial relationship between H-5 and H-6 which indicates a trans-fused lactone ring, since H-7 and H-5 are generally α in germacrolide-derived elemanolides. These chemical shift values and coupling constants for H-5 and H-6 are similar to those reported for the Cope

rearrangement products of chihuahuin [8] and eupaserrin acetates [9]. The ¹H NMR spectrum also exhibited a three-proton singlet at δ 1.36 and two vinyl proton signals at 5.11 and 4.82. The H-1 and H-2 signals appeared as an AX pattern at 6.99 and 4.42 (J=7.5) indicating a cis relationship of the enol-acetate. This result placed the second hydroxyl group of the molecule at C-2 and assigned the β -configuration of this OH group in 1a [10]. The H-8 and H-9 proton signals represented the AB part of an ABX pattern with the H-9 signals appearing as a doublet centred at 5.61 (J=7) and H-8 at 5.51 as a doublet of doublets (J=7, J=6).

Concerning the stereochemistry at C-8 and C-9, the large coupling constant (J = 10), observed between H-8 and H-9 in 1a suggested a diaxial relationship between these protons placing H-8 β -axial and H-9 α -axial. Furthermore, the assigned H-8 stereochemistry is in accord with the observed splitting (~ 1 Hz) of the exocyclic methylene doublet signals, due to the geminal coupling in α, β ,-unsaturated C-6 γ -lactones with either a C-8 α -OH or ester side chain [11].

The upfield chemical shift of H-8 requires a comment. The alternative possibility of a C-8 lactone could explain the upfield chemical shift of H-8. The negative Cotton effect observed in the CD spectrum at 262 nm is predicted either for a C-6 trans-fused y-lactone or a C-8 cis-fused γ-lactone [7], but the later case would not be in agreement with Samek's rule [5,6], since the 4J values observed for the exocyclic methylene signals in montafrusin are 3.8 and 3.5 Hz. According to these facts and the Cope rearrangement product 3, montafrusin must be a C-6 trans-fused γ -lactone. In an attempt to interpret the upfield chemical shift of H-8, we have observed that in C-6 trans-fused germacrolides with α C-8 ester attachments, tulipinolide, tulipinolide diepoxi [12], chihuahuin [8], lanuginolide 11,13 dehydro [13], the β H-8 (axial) signal has a higher chemical shift ($\delta 4.5-5.2$) than the α H-8 (equatorial) signal in germacrolides with β C-8 ester attachments, epitulipinolide [12], eupatoriopicrin [14], eupasserrin [9], lipiferolide [15], epitulipinolidediepoxi [15], costunolide 8β angeloxy, 3β -9- α -dihydroxy [16], which are always further downfield (δ 5.7–5.9) due to the equatorial position and the deshielding effect of the $\Delta^{11,13}$ bond. On the other hand, C-6 trans-fused γ -lactones with a C-8 β side chain ester normally have a small $J_{7.8}$ (≤ 1 Hz) and C-6 trans-fused γ -lactones with a C-8 α side chain ester have a large $J_{\pi/8}$ (7–9 Hz). However, the $J_{7.8}$ (3 Hz) observed for montafrusin lies between both values, indicating that a certain torsion of the dihedral angle H-C₇-C₈-H allowing a value near 120° might exist, and could be due to the combined influence of the $\Delta^{11,13}$ bond and the C-8 α angeloxy function. Based on all these facts we propose 1a as the more likely structure for montafrusin.

EXPERIMENTAL

Isolation of montafrusin (1a). Montanoa frutescens (Mairet) Hemsl. was collected in Morelos, México, 60 km S of México City on I November 1976. A voucher is deposited at the Instituto de Biologia (UNAM), México.

A 3 kg sample of the leaves, flowers and stems was extracted first with petrol, then with CHCl₃, and the resultant extracts chromatographed on a Si gel column. From the chromatography of the petrol extract caryophyllene, taraxasterol acetate, kaurenic acid and its corresponding 15x-isovalerate were isolated.

From the chromatography of the CHCl₃ extract in the fractions eluted with EtOAc,-a dark brown syrup was obtained which crystallized upon addition of CHCl₃. Montafrusin was recrystallized from EtOAc-CHCl₃, mp 184-6°. UV $\lambda_{\text{max}}^{\text{EtOH}}$: 213 nm (ε = 23650); IR $\nu_{\text{max}}^{\text{RBr}}$ cm⁻¹: 3540, 3450, 1765, 1710, 1650; CD (MeOH): 262 nm ([θ] = 2093), 214 nm ([θ] + 14953); MS m/e: 362 (M⁺), 344 (M⁺ - H₂O), 262 (M⁺ - C₄H₇COOH), 244 (M⁺ - H₂OC₄H₇COOH), 83 (C₅H₇O), 55 (C₄H₇).

Montafrusin acetate (1b). A 30 mg sample of 1a, 2 ml Ac_2O and 0.5 ml Py were combined and left overnight at room temp. The resultant residue, after removing the excess of Ac_2O and Py under high vacuum, was purified by TLC (CHCl₃-Me₂CO, 9:1) yielding the oily diacetate. UV λ_{max}^{EtOH} 213 nm (ε = 14200); IR ν_{max}^{flim} cm⁻¹: 1775, 1735, 1720, 1650, 1600.

Pyrolysis of 1b. Montafrusin diacetate (1b) (25 mg) was heated for 10 min under high vacuum at 200° in a sublimation tube, to give a colourless oil. The ¹H NMR spectrum indicated the presence of one major component which was in accord with structure 3 (Table 1). IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 1775, 1755, 1720, 1675, 1650.

Acknowledgements—We are grateful to Mr. Errol J. Olivier for assistance in performing the ¹H NMR measurements and CD spectrum and to Dr. Nikolaus H. Fischer for the constructive criticism of this manuscript. We thank Dr. Mario Suoza for identifying the plant material.

REFERENCES

 Caballero, Y. and Walls, F. (1970) Bol. Inst. Univ. Nac. Auton. Mex. 22, 79.

- 2. Geissman, T. and Griffin, T. S. (1971) Rev. Latinoam. Quim.
- 3. Frazer, R. R. (1960) Can. J. Chem. 38, 549.
- Herz, W., Ratappa, S., Rouv, S. K., Schmid, J. J. and Mirrington, R. N. (1966) Tetrahedron 22, 1907.
- 5. Samek Z. (1970) Tetrahedron Letters 671.
- 6. Samek Z. (1979) Coll. Czech. Chem. Commun. (in press).
- Stöcklin, W., Waddell, T. G. and Geissman, T. A. (1970) Tetrahedron 26, 2397.
- Renold, W., Yoshioka, H. and Mabry, T. J. (1970) J. Org. Chem. 35, 4264.
- Kupchan, M. S., Fujita, T., Maruyama, M. and Britton, B. W. (1973) J. Org. Chem. 38, 1260.
- Fischer, N. H., Mabry, T. J. and Kagan, H. B. (1968) Tetrahedron 24, 4091.
- Yoshioka, H., Mabry, T. J., Irwin, M. A., Geissman, T. A. and Samek, Z. (1971) Tetrahedron 27, 3317.
- Doskotch, R. W. and El-Feraly, F. S. (1970) J. Org. Chem. 35, 1928.
- Talapatra, S. K., Patra, A. and Talapatra, B. (1973) Phytochemistry 12, 1827.
- Drozoz, B., Grabarczyk, H., Samek, Z., Holoub, M., Herout, V. and Sorm, F. (1972) Coll. Czech. Chem. Commun. 37, 1546.
- Doskotch, R. W., Keely, S. L., Hufford, C. D. and El-Feraly, F. S. (1975) Phytochemistry 14, 769.
- Bohlmann, F., Mahanta, P. K., Suwita, A., Natu, A. A., Zdero, C., Dorner, W., Ehlers, D. and Grenz, M. (1977) Phytochemistry 16, 1973.